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Abstract: The Lewss acid (Z-propoxyjutanum trichionde 1s an efticient reagent for epoxide-mnitiated polyene
cychisations. Thus, 4 underwent tricyclisation to yield tricychic products 5-7 in 73 % yield. The tetraene epoxide 1
gave pentacycle 15 1n 21 % yield The latter 1s the first example of a cationic pentacarbocyclisation

The first example of an epoxide-initiated polyene cyclisation was reported! before its biological
significance was discovered, after which the field became very active? to an extent that this type of cyclisation
has been accepted as a standard method for the formation of fused carbocyclic rings.? The attraction of this
synthetic construction is the high degree of molecular complexity furmshed in a single step. Biomimetic
cyclisations that involve the formation of two rings can be achieved in respectable yield,3* but the application
of this reaction in the construction of three rings has resulted 1 low yields of fully cyclised products (5-20
%).3-4 The only example of an epoxide-initiated tetracyclisation furnished (+)-allopregnanolone in ~2 % yield.>r
The problems with such cychsations can be attributed to two factors: 1. non-cyclisation reactions of the epoxide,
and 2. non-stereoselective cyclisation of the polyene. The former may be alleviated to a considerable extent by
Judicious choice of the acid used to promote the cyclisation, and the latter by appropnate design of the epoxide
polyene. Under ideal circumstances it should be feasible to synthesise polycyclic triterpenoids in a single step
from an acyclic substrate. Thus 1t was our aim to design a suitably functionalised polyene epoxide substrate,
e g. 1, which, upon carefully controlled acid-promoted reaction, would give direct access to the oleanane series
of triterpenes, e.g. 2-3, via a pentacarbocyclisation. Our preliminary results are presented in this Letter.

1 Cyclisation

2 Functional Group

. Conversion
SiMe,

1 2, B-Amyrn (R = OH)
3, Olean-12-ene (R = H)

Epoxide 1 incorporates several key features which have been shown 1n a related series to promote and
control the cyclisation. The fluorine atom cation-stabilising (C-S) auxiliary* at pro-C13 would be expected not
only to enhance the cyclisation but also to control the regiochemistry to give the six-membered C-ring.% The
olefinic bond of 1, pro-C17-18, involved in the formation of ring D has the (Z)-stereochemistry so that,
according to the Stork-Eschenmoser principle, the closute would give the required D/E syn-cis configuration in
2 and 3. The cyclisation would be terminated by the highly nucleophilic propargyl silane group.%<d

Model studies with the epoxy dienyne 4 gave very encouraging results.> Tieatment of 4 with (2-
propoxy)titanium trichloride® (7.0 eq, CH,Cl,, -78 °C, 10 mun) resulted 1n facile cyclisation to yield three
tricychic products in a combined yield of 73 % (Scheme 1) 7> ® The major product of the cyclisation proved to
be 5 (49 %) and the minor products were identified as the two stereoisomers 6 (12 %) and 7 (12 %). The

7849



7850

Scheme 1:
{--PrOYTICl, (7 O eq),
W I Siktey CH,C,, -78 °C
]
4
SiMe, °
[+] H
Fav]
8 Sa
Scheme 2:
F, < 1 NaCN, 70 %
| | 2. DIBAL then Hy0", 93 %
A 3 CHy=C(Me)MgBr,
SiMe, 28
9. R=Br 12
10,R=CN
11, R = CHO MeC(OE,, K
82%, EZ 964
F
i 1 DIBAL, %0 %
ettt
| 2 (Ph,5*CHMe;,) BF,,
H "o Sitey t-BuL1, 69 % SiMe,
1 13, R = CO,Bt
14, R =CHO
Scheme 3:
F
I | (-PrOYTiCl; (3 O eg),
R ———— o
I CH,CY,, 78 °C
H “o SiMe,

16,13 %

SiMe,

pro-1§ 17,24 %



7851

cyclisation mixture was initially acetylated and then purified by column chromatography on silver nitrate
impregnated silica gel which separated 5 as the corresponding acetate. Tricycie 5 was the result of a frans-anti-
trans closure of 4 via a chair-chair transition state, which corresponds to the synthetically prefered reaction
pathway. The structure of 5 was proposed by interpretation of NMR data and then confirmed by transformation
[(a), Ac,0, DMAP; (b), Os; (c), NaOMe; (d), PCC] to the diketone Sa which is a degradation product of
malabaricol.? The two minor tricyclic products 6 and 7 were converted [(a)+(b)] to the corresponding acetoxy
ketones, 6a and 7a respectively, which were separable by chromatography. Tricycle 6, the B-ring boat isomer,
was identified by single crystal X-ray analysis of ketone 6a,'® and the stereochemistry of 7 was tentatively
assigned on the basis of NMR data of 7a.!! Auempted cyclisation of 4 with TiCl, resulted in decomposition and
the use of (i-Pr0), (TiCl,  gave rise to the formation of bicyclic ether 8 (15 %) at the expense of 5-7.12 Hence
the constitution of the titantum catalyst is a key feature of the cyclisation. Cyclisation of 4 in nitromethane gave
an increased selectivity for 5, (5:6:7, 8:1:1), but with lower overall yield.

The cyclisation substrate, 1, was synthesised from the known bromo triene 949 according to the
procedure outlined in Scheme 2.7 Thus, treatment of 9 with NaCN gave nitrile 10 which was then reduced
with DIBAL to aldehyde 11. Reaction of 11 with CH,=C(Me)MgBr gave alcohol 12 which underwent ortho
ester Claisen rearrangement! to ester 13 with high stereoselectivity (96:4). The synthesis was completed by
reduction of 13 with DIBAL, and alkylation of the resulting aldehyde 14, with the sulphur ylide derived from
diphenyl-(2-propyl)sulphonium tetrafluoroborate,'* gave the (E,E,Z,Z)-epoxide 1.'3

The cyclisation of epoxide 1 was initially investigated on a semi-preparative scale to determine the
optimum conditions for the formation of the pentacyclic products. The propensity of several Lewis acids to
promote cyclisation was investigated under standaidised conditions. As with substrate 4, the most successful
conditions for the cyclisation of 1 employed (2-propoxy)titanium trichloride, giving rise to three major products,
15-17, for a combined GC yield of 58-72 % of the crude reaction mixture, and these were separable by column
chromatography. Thus, treatment of epoxide 1 on a preparative scale with (i-PrO)TiCl, (3.0 eq) in CHyCl, at
-78 °C for 10 min gave pentacycle 15 in 21 % GC yield (10 % 1solated yield after recryst. to >98 % purity; mp
184-186 °C) (Scheme 3).7: 1¢ The stereochemistry of 15 was established from spectral data and by correlation
with the data for the ABCD- and BCDE-rings of several closely related natural, and non-natural, oleanenes
including B-amyrin (2).%% 17 The fluoropentacycle pro-15 was not ssolated but evidently underwent in sifu
regioselective dehydrofluorination (C12-13), to 15, in order to relieve the transannular (C13-F v C17-Me, C19
v C14-Me) and Pitzer (C13-F v C18-H v C17-Me) strain associated with D/E syn-cis conﬁguration.18 The
other major products of the cyclisation were the bicyclic ether 16 (13 %)% 1° and a rearranged bicyclic
carbocycle (24 %), tentatively assigned as 17,20 both resulting from only partial cyclisation of the polyene.

In conclusion, we have performed the first example of a high yielding epoxide-initiated tricarbo-
cyclisation and the first example of an epoxide-1nitiated pentacarbocyclisation, 1— 15. The latter proceeds with
very respectable yield when considering the degree of molecular complexity furnished in a single step, and when
compared to previous cyclisation studies. These two examples demonstrate that (2-propoxy)titanium trichloride
is an effective reagent for promoting this type of reaction.
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